首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57761篇
  免费   3257篇
  国内免费   170篇
工业技术   61188篇
  2023年   589篇
  2022年   383篇
  2021年   1616篇
  2020年   1203篇
  2019年   1333篇
  2018年   1638篇
  2017年   1631篇
  2016年   2002篇
  2015年   1524篇
  2014年   2422篇
  2013年   3613篇
  2012年   3737篇
  2011年   4490篇
  2010年   3250篇
  2009年   3351篇
  2008年   3233篇
  2007年   2549篇
  2006年   2319篇
  2005年   1980篇
  2004年   1840篇
  2003年   1754篇
  2002年   1555篇
  2001年   1330篇
  2000年   1176篇
  1999年   1124篇
  1998年   2014篇
  1997年   1298篇
  1996年   941篇
  1995年   709篇
  1994年   614篇
  1993年   563篇
  1992年   393篇
  1991年   361篇
  1990年   346篇
  1989年   332篇
  1988年   261篇
  1987年   217篇
  1986年   171篇
  1985年   181篇
  1984年   153篇
  1983年   104篇
  1982年   80篇
  1981年   81篇
  1980年   71篇
  1979年   68篇
  1978年   60篇
  1977年   89篇
  1976年   138篇
  1975年   58篇
  1973年   51篇
排序方式: 共有10000条查询结果,搜索用时 843 毫秒
991.
A multi-fluid nonrandom lattice fluid model with no temperature dependence of close packed volumes of a mer, segment numbers and energy parameters of pure systems is presented. The multi-fluid nonrandom lattice fluid (MF-NLF) model with the local composition concept was capable of describing properties for complex systems. However, the MF-NLF model has strong temperature dependence of energy parameters and segment numbers of pure systems; thus empirical correlations as functions of temperature were represented for reliable and convenient use in engineering practices. The MF-NLF model without temperature dependence of pure parameters could not predict thermodynamic properties accurately. It was found that the present model with three parameters describes quantitatively the vapor pressure and the saturated density for the pure fluid.  相似文献   
992.
BaCu(B2O5) ceramics were synthesized and their microwave dielectric properties were investigated. BaCu(B2O5) phase was formed at 700°C and melted above 850°C. The BaCu(B2O5) ceramic sintered at 810°C had a dielectric constant (ɛr) of 7.4, a quality factor ( Q × f ) of 50 000 GHz and a temperature coefficient of resonance frequency (τf) of −32 ppm/°C. As the BaCu(B2O5) ceramic had a low melting temperature and good microwave dielectric properties, it can be used as a low-temperature sintering aid for microwave dielectric materials for low temperature co-fired ceramic application. When BaCu(B2O5) was added to the Ba(Zn1/3Nb2/3)O3 (BZN) ceramic, BZN ceramics were well sintered even at 850°C. BaCu(B2O5) existed as a liquid phase during the sintering and assisted the densification of the BZN ceramic. Good microwave dielectric properties of Q × f =16 000 GHz, ɛr=35, and τf=22.1 ppm/°C were obtained for the BZN+6.0 mol% BaCu(B2O5) ceramic sintered at 875°C for 2 h.  相似文献   
993.
Radiation‐induced simultaneous grafting of styrene onto polytetrafluoroethylene (PTFE) films and the subsequent sulfonation in the chlorosulfonic acid/dichloroethane were investigated. The effects of the main radiation grafting conditions, such as the type of solvents, irradiation dose, dose rate, the styrene concentrations, etc., on the degree of grafting (DOG) were studied. To elucidate the influence of both the grafting and sulfonation conditions on the properties of the PTFE‐g‐polystyrene‐sulfonic acid (PSSA) membranes, the sulfonation conditions, including the sulfonation temperature and the concentration of the ClSO3H with respect to the DOG, were systematically evaluated. The grafted and sulfonated membranes were characterized by FTIR–ATR spectra, ion‐exchange capacity (IEC), water uptake, thickness measurement, etc. The as‐prepared PTFE‐g‐PSSA membranes in this work showed a good combination of a high IEC (0.85–2.75 meq g?1), acceptable water uptake (8.86–56.9 wt %), low thickness, and volume expansion and/or contraction. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1415–1428, 2006  相似文献   
994.
Nitrogen molecules have been encapsulated into the central hollows of vertically aligned carbon nitride (CN) multiwalled nanofibers by dc plasma-enhanced chemical vapor deposition with C2H2, NH3, and N2 gases on a Ni/TiN/Si(1 0 0) substrate at 650 °C. X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectra showed the existence of nitrogen molecules in CN nanofibers. Elemental mapping images with electron energy loss spectroscopy of the CN nanofiber and catalyst metal, and optical emission spectroscopy spectra of the plasma showed the distribution of nitrogen atoms and molecules in the CN nanofiber, catalyst metal, and gaseous precursor, respectively. These studies showed that atomic nitrogen diffused into the catalytic metal particle because of the concentration gradient and then saturated at the bottom of the particle. Saturated nitrogen atom participated in the formation of the CN nanofiber wall but most of nitrogen was trapped in the central hollow of the nanofiber as molecules.  相似文献   
995.
Nanocomposites based on thermoplastic elastomeric polyurethane (TPU) and layered silicate clay were prepared by in situ synthesis. The properties of nanocomposites of TPU with unmodified clay were compared with that of organically modified clay. The nanocomposites of the TPU and organomodified clay showed better dispersion and exhibited superior properties. Exfoliation of the clay layers was observed at low organoclay contents, whereas an intercalated morphology was observed at higher clay contents. As one of major purposes of this study, the effect of the silicate layers in the nanocomposites on the order–disorder transition temperature (TODT) of the TPU was evaluated from the intensity change of the hydrogen‐bonded and free carbonyl stretching peaks and from the peak position change of the N? H bending peak. The presence of the organoclay increased TODT by approximately 10°C, which indicated improved stability in the phase‐separated domain structure. The layered silicate clay caused a tremendous improvement in the stiffness of the TPU; meanwhile, a reduction in the ultimate elongation was observed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3048–3055, 2006  相似文献   
996.
Vinyl pivalate (VPi) was suspension‐polymerized to synthesize high molecular weight (HMW) poly(vinyl pivalate) (PVPi) with a high conversion above 95% for a precursor of syndiotacticity‐rich HMW poly(vinyl alcohol) (PVA). Also, the effects of the polymerization conditions on the conversion, molecular weight, and degree of branching (DB) of PVPi and PVA prepared by the saponification of PVPi were investigated. Bulk polymerization was slightly superior to suspension polymerization in increasing the molecular weight of PVA. On the other hand, the latter was absolutely superior to the former in increasing the conversion of the polymer, indicating that the suspension polymerization rate of VPi was faster than that of the bulk one. These effects could be explained by a kinetic order of a 2,2′‐azobis(2,4‐dimethylvaleronitrile) concentration calculated by the initial rate method. Suspension polymerization of VPi at 55°C by controlling various polymerization factors proved to be successful in preparing PVA of HMW [number‐average degree of polymerization (Pn): 8200–10,500], high syndiotactic diad content (58%), and very high yield (ultimate conversion of VPi into PVPi: 94–98%). In the case of the bulk polymerization of VPi at the same conditions, the maximum Pn and conversion of 10,700–11,800 and 32–43% were obtained, respectively. The DB was lower and the Pn was higher with PVA prepared from PVPi polymerized at lower initiator concentrations. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 832–839, 2003  相似文献   
997.
Water‐soluble high molecular weight (HMW) syndiotactic poly(vinyl alcohol) (s‐PVA) microfibrillar fibers were prepared by the saponification with various conditions such as amount of alkali solution, saponification temperature, and saponification concentration from copoly(vinyl pivalate (VPi)/vinyl acetate (VAc)) copolymerized using various VPi/VAc feed ratios. To produce s‐PVA microbrillar fibers having various water‐soluble temperatures for many industrial applications, the intrinsic viscosities, syndiotactic diad (S‐diad) contents, and degrees of saponification (DS)s of PVAs were finely controlled to 1.2–3.6 dL/g, 56.3–58.3%, and 91.4–98.3%, respectively. Through a series of experiments, it was found that the amount of alkali may alter the structure of the saponified polymers, primarily the DS, and the structural variation changes viscosity. That is, intrinsic viscosity was sharply decreased as the amount of alkali solution was increased. DS was increased with an increase in the amount of alkali solution. S‐diad content was increased with an increase in the VPi content. HMW s‐PVA microfibrillar fibers having S‐diad content of 56.3–58.3% prepared by the saponification of copoly(VPi/VAc) were completely soluble in water at 100°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1482–1487, 2003  相似文献   
998.
Composites based on poly(diphenyl amine) (PDPA) and multiwall carbon nanotubes (MWNTs) were prepared by chemical oxidative polymerization through two different approaches: in situ polymerization and intimate mixing. In in situ polymerization, DPA was polymerized in the presence of dispersed MWNTs in sulfuric acid medium for different molar composition ratios of MWNT and DPA. Intimate mixing of synthesized PDPA with MWNT was also used for the preparation of PDPA/MWNT composites. Transmission electron microscopy revealed that the diameter of the tubular structure for the composite was 10–20 nm higher than the diameter of pure MWNT. Scanning electron microscopy provided evidence for the differences in the morphology between the MWNTs and the composites. Raman and Fourier transform IR (FTIR) spectroscopy, thermogravimetric analysis, X‐ray diffraction, and UV–visible spectroscopy were used to characterize the composites and reveal the differences in the molecular level interactions between the components in the composites. The Raman and FTIR spectral results revealed doping‐type molecular interactions and coordinate covalent‐type interactions between MWNT and PDPA in the composite prepared by in situ polymerization and intimate mixing, respectively. The backbone structure of PDPA in the composite decomposed at a higher temperature (>340°C) than the pristine PDPA (~300°C). This behavior also favored the molecular level interactions between MWNT and PDPA in the composite. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3721–3729, 2006  相似文献   
999.
Hotmelt pressure sensitive adhesives (PSAs) usually contain styrenic block copolymers like styrene–isoprene–styrene (SIS), SBS, SEBS, tackifier, oil, and additives. These block copolymers individually reveal no tack. Therefore, a tackifier is a low molecular weight material with high glass transition temperature (Tg), and imparts the tacky property to PSA. The SIS block copolymer with different diblocks was blended with hydrogenated dicyclopentadiene (H‐DCPD tackifier), which has three kinds of Tg. PSA performance was evaluated by probe tack, peel strength, and shear adhesion failure temperature. PSA is a viscoelastic material, so that its performance is significantly related to the viscoelastic properties of PSAs. We tested the viscoelastic properties by dynamic mechanical analysis and the thermal properties by differential scanning calorimeter to investigate the relation between viscoelastic properties and PSA performance. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 102: 2839–2846, 2006  相似文献   
1000.
P. Kim  J.B. Joo  H. Kim  W. Kim  Y. Kim  I.K. Song  J. Yi 《Catalysis Letters》2005,104(3-4):181-189
Mesoporous Ni–alumina catalysts (Ni–alumina-pre and Ni–alumina-post) were synthesized by one-step sol–gel method using micelle complex comprising lauric acid and nickel ion as a template with metal source and using aluminum sec-butoxide as an aluminum source. The Ni–alumina catalysts showed relatively high surface areas (303 m2/g for Ni–alumina-pre and 331 m2/g for Ni–alumina-post) and narrow pore size distributions centered at ca. 4 nm. Highly dispersed Ni particles were observed in the Ni–alumina catalysts (ca. 5.2 nm for Ni–alumina-pre and ca. 6.8 nm for Ni–alumina-post) after reduction at 550 °C, while a catalyst prepared without a template (NiAl-comp) exhibited inferior porosity with large metal particles (ca. 12.3 nm). Mesoporous Ni–alumina catalysts with different porosity were obtained by employing different hydrolysis step of aluminum source. When aluminum source was hydrolyzed under the presence of micelle complex, a supported Ni catalyst with highly developed framework mesoporosity was obtained (Ni–alumina-post). On the other hand, when aluminum source was pre-hydrolyzed followed by mixing with micelle solution, the resulting catalyst (Ni–alumina-pre) retained high portion of textural porosity. It was revealed that the hydrolysis method employed in this research affected not only textural properties but also metal-support interaction in the Ni–alumina catalysts. It was also found that the Ni–alumina-pre catalyst exhibited weaker interaction between nickel and alumina than the Ni–alumina-post, leading to higher degree of reduction in the Ni–alumina-pre catalyst. In the hydrodechlorination of o-dichlorobenzene, the Ni–alumina catalysts exhibited better catalytic performance than the NiAl-comp catalyst, which was attributed to higher metal dispersion in the Ni–alumina catalysts. In particular, the Ni–alumina-pre catalyst showing 1.5 times higher degree of reduction and larger amounts of o-dichlorobenzene adsorption exhibited better catalytic performance than the Ni–alumina-post catalyst.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号